Preparing for Post-Quantum: The DNSSEC Case Burt Kaliski, Verisign 6th International Symposium on Cyber Security, Cryptology and Machine Learning (CSCML 2022) **VERISIGN** June 30 – July 1, 2022 #### Agenda: Preparing for Post-Quantum DNSSEC ## 1. DNS and DNSSEC #### DNS and DNSSEC: Key Message DNS is core protocol for internet naming DNSSEC is extension for authenticating DNS records #### The Domain Name System #### 341.7 Million Domain Name Registrations¹ example.com, cscml.org, bgu.ac.il, etc. #### 1591 Top-Level Domains² .com, .org, .il, etc. #### 1 Global Root ¹ Verisign, <u>The Domain Name Industry Brief</u>, April 2022. ² IANA, <u>Root Zone Database</u>, accessed May 19, 2022. #### **DNSSEC Trust Chain (Simplified)** #### TLD Zone Chain Links #### Legend #### SLD Zone Chain Links ## 2. Post-Quantum DNSSEC #### Post-Quantum DNSSEC: Key Message DNSSEC use case has unique priorities for practical long-term cryptographic resiliency ## Some DNSSEC Distinctives Practical Considerations Differ from Other Use Cases Small response sizes (e.g., ≤ 1,220 bytes) preferred for UDP transport Sign-once, verify-many model Ceremonial / offline signing Public key lookups built into protocol Highly decentralized deployment #### Primary Classical DNSSEC Algorithms & Sizes Mandatory or Recommended for Signing Implementations¹ | Algorithm | Public
Key Size
(bytes) ² | Signature
Size
(bytes) ² | Notes | |------------------------------|--|---|-------------| | RSASHA256 ^{3,4} | 260 | 256 | Mandatory | | ECDSAP256SHA256 ⁵ | 32 | 64 | Mandatory | | ED25519 ⁶ | 32 | 64 | Recommended | #### All Are Vulnerable to Quantum Cryptanalysis ¹ RFC 8624. ² Algorithm-specific portion, excludes protocol overhead. ³ RFC 5702. ⁴ Assumes 2048-bit keys, public exponent $e = 2^{16}+1.5$ RFC 6605. 6 RFC 8080. powered by VERISIGN #### Leading NIST PQC Project Signature Algorithms¹ | Algorithm | Public
Key Size
(bytes) ² | Signature
Size
(bytes) ² | Notes | |------------------------|--|---|---| | Falcon ³ | 897 | 666 | Lattice-based
NIST Level I | | Dilithium ⁴ | 1,312 | 2,240 | Lattice-based
NIST Level II | | SPHINCS+5 | 32 | 7,856 | Alternate
Stateless hash-based
NIST Level I | powered by **VERISIGN** ¹ D. Moody, <u>The Beginning of the End: The First NIST PQC Standards</u>, PKC 2022, March 2022. ² Algorithm-specific portion, excludes protocol overhead. ³ T. Prest et al., <u>Falcon</u>. ⁴ V. Lyubashevsky et al., <u>CRYSTALS – Dilithium</u>. ⁵ A. Hülsing et al., <u>SPHINCS+</u>. Refs. 3-5 all from NIST 3rd PQC Standardization Conference, June 2021. #### Stateful Hash-Based Signature Algorithm Sizes¹ | Algorithm | Public
Key Size
(bytes) ² | Signature
Size
(bytes) ² | Notes | |---|--|---|---------------------------------| | HSS-LMS with params L=2,
LMS_SHA256_M32_H10,
LMOTS_SHA256_N32_W8 ³ | 60 | 2,836 | Max. 2 ²⁰ signatures | | XMSSMT-
SHA2_20/2_256 ⁴ | 68 | 4,963 | Max. 2 ²⁰ signatures | powered by **VERISIGN** ¹ A. Fregly and R. van Rijswijk-Deij, <u>Stateful Hash-Based Signatures for DNSSEC</u>, Internet-Draft, 2022. ² Algorithm-specific portion, excludes protocol overhead. ³ <u>RFC 8554</u>. ⁴ <u>RFC 8391</u>. #### Key Priority: Diversity of Cryptographic Families Solution Goal: Deploy Post-Quantum Techniques That Fit DNSSEC from Two or More Families Long-Term Resiliency: If One Technique Becomes at Risk, Switch to Alternate until Replacement Can Be Deployed # 3. Merkle Tree Public Keys (aka Synthesized Signing Keys) #### Merkle Tree Public Keys: 1 Key Message Merkle Tree Public Keys can help provide long-term cryptographic resiliency for DNSSEC with relatively short signatures powered by VERISIGN ¹ B. Kaliski, <u>Securing the DNS in a Post-Quantum World: Hash-Based Signatures and Synthesized</u> Zone Signing Keys, Verisign blog, Jan. 2021. #### Merkle Tree #### Root Node Recursively Authenticates All Data Values - Parent node value is hash of child node values, "context" info - "Canonical aggregation" used for example trees ## Authentication Path Verify Data Value by Re-Hashing with Sibling Nodes ### Sibling nodes = Auth. Path #### **DNSSEC Data Authentication Model** #### **DNSSEC Data Authentication Model** Verifier's View: Signer Produces Public Key & Signature ## DNSSEC with Merkle Tree Public Keys Another Way to Produce Public Key & Signature #### **DNSSEC** with Merkle Tree Public Keys Public Key = Tree Root; Signature = Authentication Path #### Paradigm Shift: Generated to Synthesized | Conventional DNSSEC | Merkle Tree Public Keys | |------------------------|--| | Generated Key Pair | Synthesized Public Key | | Key Gen + Sign | Construct Merkle Tree & Authentication Paths | | Public Key | Tree Root (or any node) | | Private Key | n/a | | Signature | Authentication Path | | Verify | Verify Authentication Path | | 1-2 Active Public Keys | Many Active Public Keys* | *Public Keys Change As Data Values Are Updated ## Merkle Tree Public Key Signature Scheme Sizes Draft Specification in Preparation | Algorithm | Public
Key Size
(bytes) ¹ | Signature
Size
(bytes) ¹ | Notes | |------------------------|--|---|--| | MTPKSS-
SHA2_20/256 | 72 | 4 to 644 | Max. 2 ²⁰ data values. Signature size increases as data values are appended | #### **Draft Formats** Public Key = [Tree ID]₃₂ . [Left Index]₄ . [Right Index]₄ . [Node Value]₃₂ Signature = [Leaf Index]₄ . (0-20) x [Sibling Value]₃₂ Algorithm-specific portion, excludes protocol overhead powered by VERISIGN (Yarisign Public (Yarisi ## 4. Merkle Tree Ladders #### Merkle Tree Ladders: Key Message Merkle Tree Ladders are a way to model, optimize key management for Merkle Tree Public Keys ## Merkle Tree Ladder Rungs Collectively Authenticate All Data Values - Any node in Merkle tree can be a rung on ladder - Generalization: Any node in Merkle graph #### **Ladder Evolution** #### Rungs Updated to Reflect New Data Values #### **DNSSEC** with Merkle Tree Ladders Public Key = Ladder Rung; Signature = Auth. Path to Rung #### **Definition of Endurance** Endurance (Λ_N) = maximum E such that: Prob[E successive responses can be verified using rungs from Λ_N] $\geq \frac{1}{2}$ - Endurance depends on rung "strategy" - May also depend on *N*, signer's update pattern, verifier's query pattern and response indexes #### Initial Model: 1 Append & 1 Query / Iteration ## Baseline: Full-Rung Strategy One Rung for Each Data Value Verisign Public powered by **VERISIGN** #### Improvement: Extended Binary-Rung Strategy #### Comparing Strategies (under initial model) | Strategy | Number of
Rungs | Endurance
(Queries) | |-----------------------------|--------------------|--| | Full-Rung | N | $\sim \sqrt{2 \ln 2} \sqrt{N}$ | | Extended Binary-Rung | $\sim \log_2 N$ | $\sim \sqrt{\frac{2}{3} \ln 2} \sqrt{N}$ to $\sim \sqrt{2 \ln 2} \sqrt{N}$ | Analysis similar to Birthday Paradox #### Revised Model: α Appends, ρ Queries / Iteration #### Comparing Strategies (under revised model) | Strategy | Number of
Rungs | Endurance
(Queries) | |-------------------------|--------------------|--| | Full-Rung | N | $\sim \sqrt{2 \ln 2} \sqrt{\frac{\rho}{\alpha}} \sqrt{N}$ | | Extended
Binary-Rung | $\sim \log_2 N$ | $\geq \sim \sqrt{\frac{2}{3} \ln 2} \sqrt{\frac{\rho}{\alpha}} \sqrt{N}$ | Many variants and optimizations possible ## Endurance Grows as Query Rate Increases Extended Binary-Rung Almost as Good as Full-Rung # 5. PQ DNSSEC Next Steps #### PQ DNSSEC Next Steps: Key Message DNSSEC needs a dedicated research and standards effort to ensure long-term cryptographic resiliency #### Revisiting Key Messages DNS is core protocol for internet naming; DNSSEC is extension for authenticating records DNSSEC use case has unique priorities for practical long-term cryptographic resiliency Merkle Tree Public Keys can help provide longterm resiliency with relatively short signatures Merkle Tree Ladders are a way to model and optimize Merkle Tree Public Keys DNSSEC needs its own research and standards effort for long-term cryptographic resiliency #### Recommended Next Steps #### Questions? ## Questions?